Nouvelles Du Monde

Des scientifiques de la NASA explorent l’énergie noire

Des scientifiques de la NASA explorent l’énergie noire

Illustration de l’énergie noire. Crédit : Visualisation par Frank Summers, Space Telescope Science Institute. Simulation par Martin White et UC Berkeley et Lars Hernquist, Harvard University

L’un des plus grands mystères de l’astrophysique peut-il être résolu en paraphrasant la théorie de la gravité d’Albert Einstein ? Pas encore, selon une nouvelle étude qu’il a co-écrit[{” attribute=””>NASA scientists.

The universe is expanding at an accelerating rate, and physicists don’t know why. This phenomenon seems to contradict everything scientists understand about gravity’s effect on the cosmos: It’s as if you threw an apple in the air and instead of coming back down, it continued upward, faster and faster. The cause of the cosmic acceleration, dubbed dark energy, remains a mystery.

A new study marks the latest effort to determine whether this is all simply a misunderstanding: that expectations for how gravity works at the scale of the entire universe are flawed or incomplete. This potential misunderstanding might help researchers explain dark energy. However, the study – one of the most precise tests yet of Albert Einstein’s theory of gravity at cosmic scales – finds that the current understanding still appears to be correct. The study was from the international Dark Energy Survey, using the Victor M. Blanco 4-meter Telescope in Chile.

The results, authored by a group of scientists that includes some from NASA’s Jet Propulsion Laboratory (<span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

JPL
The Jet Propulsion Laboratory (JPL) is a federally funded research and development center that was established in 1936. It is owned by NASA and managed by the California Institute of Technology (Caltech). The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA's Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.

” data-gt-translate-attributes=”[{” attribute=””>JPL), were presented Wednesday, August 24, at the International Conference on Particle Physics and Cosmology (COSMO’22) in Rio de Janeiro. The work helps set the stage for two upcoming space telescopes that will probe our understanding of gravity with even higher precision than the new study and perhaps finally solve the mystery.

Webb SMACS 0723

This image – the first released from NASA’s James Webb Space Telescope – shows the galaxy cluster SMACS 0723. Some of the galaxies appear smeared or stretched due to a phenomenon called gravitational lensing. This effect can help scientists map the presence of dark matter in the universe. Credit: NASA, ESA, CSA, and STScI

More than a century ago, Albert Einstein developed his Theory of General Relativity to describe gravity. Thus far it has accurately predicted everything from the orbit of Mercury to the existence of black holes. But some scientists have argued that if this theory can’t explain dark energy, then maybe they need to modify some of its equations or add new components.

Lire aussi  L'étude permet de mieux comprendre les voies cérébrales qui contrôlent les nausées

To find out if that’s the case, members of the Dark Energy Survey looked for evidence that gravity’s strength has varied throughout the universe’s history or over cosmic distances. A positive finding would indicate that Einstein’s theory is incomplete, which might help explain the universe’s accelerating expansion. They also examined data from other telescopes in addition to Blanco, including the ESA (European Space Agency) Planck satellite, and reached the same conclusion.

Einstein’s theory still works, according to the study. So no there’s no explanation for dark energy yet. However, this research will feed into two upcoming missions: ESA’s Euclid mission, slated for launch no earlier than 2023, which has contributions from NASA; and NASA’s Nancy Grace Roman Space Telescope, targeted for launch no later than May 2027. Both telescopes will search for changes in the strength of gravity over time or distance.

Blurred Vision

How do scientists know what happened in the universe’s past? By looking at distant objects. A light-year is a measure of the distance light can travel in a year (about 6 trillion miles, or about 9.5 trillion kilometers). That means an object one light-year away appears to us as it was one year ago, when the light first left the object. And galaxies billions of light-years away appear to us as they did billions of years ago. The new study looked at galaxies stretching back about 5 billion years in the past. Euclid will peer 8 billion years into the past, and Roman will look back 11 billion years.

Lire aussi  Pogba, lésion du ménisque latéral. Temps de récupération

The galaxies themselves don’t reveal the strength of gravity, but how they look when viewed from Earth does. Most matter in our universe is dark matter, which does not emit, reflect, or otherwise interact with light. While physicists don’t know what it’s made of, they know it’s there, because its gravity gives it away: Large reservoirs of dark matter in our universe warp space itself. As light travels through space, it encounters these portions of warped space, causing images of distant galaxies to appear curved or smeared. This was on display in one of first images released from NASA’s James Webb Space Telescope.

Cette vidéo explique un phénomène appelé lentille gravitationnelle, qui peut donner l’impression que les images des galaxies sont déformées ou tachées. Cette distorsion est causée par la gravité et les scientifiques peuvent utiliser son effet pour détecter la matière noire, qui n’émet ni ne réfléchit la lumière. Crédit : Centre de vol spatial Goddard de la NASA

Les scientifiques du Dark Energy Survey examinent les images des galaxies pour une distorsion plus subtile due à la flexion spatiale de la matière noire, un effet appelé faible lentille de gravité. La force de gravité détermine la taille et la distribution de la structure de la matière noire, et la taille et la distribution, à leur tour, déterminent à quel point ces galaxies sont déformées pour nous. C’est ainsi que les images peuvent révéler la force de gravité à différentes distances de la Terre et à des moments importants de l’histoire de l’univers. Le groupe a maintenant mesuré la forme de plus de 100 millions de galaxies, et jusqu’à présent, leurs observations sont conformes aux prédictions de la théorie d’Einstein.

Lire aussi  Comment vérifier la glycémie à la maison à l'aide d'un glucomètre

“Il est encore possible de contester la théorie de la gravité d’Einstein, à mesure que les mesures deviennent plus précises”, a déclaré la co-auteure de l’étude, Agnes Ferti, qui a mené la recherche en tant que chercheuse postdoctorale au JPL. «Mais nous avons encore beaucoup à faire avant d’être prêts pour Euclid et Roman. Il est donc très important que nous continuions à collaborer avec des scientifiques du monde entier sur cette question, comme nous l’avons fait avec l’enquête sur l’énergie noire.”

Référence : “Résultats d’une enquête sur l’énergie noire de 3 ans : Limitations de l’extension CDM avec des lentilles défectueuses et un assemblage de galaxies” par DES, Avila, D Bacon, E Baxter, K Bechtol, MR Becker, GM Bernstein, S Birrer, J Blazek, S Bocquet, A. Brandao-Souza, SL Bridle, D Brooks, DL Burke, H. Camacho, A. Fields, A. Ram Rosell, M. Carrasco Kind, J. Roadman, FJ Castander, R Cordero, M Costanzi, M Crocce, LN da Costa, MES Pereira, C Davis, TM Davis, J DeRose, S Desai, E Di Valentino, HT Diehl, S Dodelson, P Doel, C. Doux, A Drlica-Wagner, K Eckert, TF Eifler, F Elsner, J Elvin-Poole, S Everett, X Fang, A Farahi, I Ferrero, A Ferte, B Flaugher, P. Fosalba, D. Friedel, O. Friedrich, J. Frieman, J. Garcia-Bellido, M. Gatti, L. Gianni, T. Giannantonio, G. Giannini, DeGruen, RA Groendel, J. Hartley, K. Herner, SR Hinton, DL Holwood, K. Honchhead, H. Huang, EM Half, de Hutterer, B. Jain , DJ James, M. Jarvis, N. Jeffrey, T. Geltima, A. Kovacs, E. Krause, K. . Kuropatkin, O. Lahav, S. Lee, P.-F. Leget, P Lemos, Leonard CD, Liddle AR, Lima M, Lin H, MacCrann N, Marshall JL, McCullough J, Mena-Fernandez J, Menanteau F, Miquel R, Miranda V, JJ Mohr, J. Muir, J. Myles , S. Nadathur, A. Navarro-Alsina, RC Nichol, RLC Ogando, Y. Omori, Y. Palmese, S. Pandey, Y. Park, M. Paterno, F. Paz-Chinchon, WJ Percival, A Piers, AA Box Malagon, A Porredon, J Prat, M Raveri, M Rodriguez-Monroy, P Rogozenski, RP Rollins, AK Romer, A Roodman, R Rosenfeld, AJ Ross, Rykoff ES, Samuroff S, Sanchez C, Sanchez E, Sanchez J, Sanchez Cid, Scarpine V, Scolnic D, Secco LF, Séville-Noarbe I, Sheldon E, Shin T, M. Smith, M. Soares-Santos, E. Suchyta, M. Tabbutt, G. Tarle, D. Thomas, C . . To, A. Troja, MA Troxel, I. Tutusaus, TN Varga, M. Vincenzi, AR Walker, N. Weaverdyck, RH Wechsler, J. Weller, B. Yanny, B. Yin, Y. Zhang et J. Zuntz. Astrophysique > Cosmologie et astrophysique non galactique.
arXiv : 2207.05766

Facebook
Twitter
LinkedIn
Pinterest

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

ADVERTISEMENT